Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production

نویسندگان

  • Moo-Young Jung
  • Hwi-Min Jung
  • Jinwon Lee
  • Min-Kyu Oh
چکیده

BACKGROUND Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference. RESULTS The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering. CONCLUSIONS We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering

BACKGROUND 2,3-Butanediol is a chemical compound of increasing interest due to its wide applications. It can be synthesized via mixed acid fermentation of pathogenic bacteria such as Enterobacter aerogenes and Klebsiella oxytoca. The non-pathogenic Saccharomyces cerevisiae possesses three different 2,3-butanediol biosynthetic pathways, but produces minute amount of 2,3-butanediol. Hence, we att...

متن کامل

Regulation of the galactose-inducible lac operon and the histidine utilization operons in pts mutants of Klebsiella aerogenes.

Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characteriz...

متن کامل

Expression of the hut operons of Salmonella typhimurium in Klebsiella aerogenes and in Escherichia coli.

The normal hut (histidine utilization) operons, as well as those with mutations affecting the regulation of their expression, of Salmonella typhimurium were introduced on an F' episome into cells of S. typhimurium and Klebsiella aerogenes whose chromosomal hut genes had been deleted and into cells of Escherichia coli, whose chromosome does not carry hut genes. The episomal hut operons respond i...

متن کامل

Catabolite repression and derepression of arylsulfatase synthesis in Klebsiella aerogenes.

When a mutant (Mao(-)) of Klebsiella aerogenes lacking an enzyme for tyramine degradation (monoamine oxidase) was grown with d-xylose as a carbon source, arylsulfatase was repressed by inorganic sulfate and repression was relieved by tyramine. When the cells were grown on glucose, tyramine failed to derepress the arylsulfatase synthesis. When grown with methionine as the sole sulfur source, the...

متن کامل

Physical tracers for bacterial aerosols.

REFERENCES CLENDENNING, K. A. 1946 Production and properties of 2,3-butanediol. XVI. Density, optical rotatory power and refraction of aqueous 2,3-butanediol solutions. Can. J. Research., 24B, 269-279. DESNUELLE, P. AND NAUDET, M. 1945 In Analytical methods for bacterial fermentations, 2nd rev., pp. 37-38. Natl. Research Council Can., No. 2952, Saskatoon, Saskatchewan. FREEMAN, G. G. 1947 Ferme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015